Assumptions:
TeX:
\theta'_{1}\!\left(0 , \frac{\tau}{2}\right) \theta_{2}\!\left(0 , \frac{\tau}{2}\right) = 2 \theta'_{1}\!\left(0 , \tau\right) \theta_{4}\!\left(0 , \tau\right)
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("59184e"),
Formula(Equal(Mul(JacobiTheta(1, 0, Div(tau, 2), 1), JacobiTheta(2, 0, Div(tau, 2))), Mul(Mul(2, JacobiTheta(1, 0, tau, 1)), JacobiTheta(4, 0, tau)))),
Variables(tau),
Assumptions(Element(tau, HH)))