Assumptions:
TeX:
\wp\!\left(z, \tau\right) = \frac{1}{{z}^{2}} + \sum_{{m}^{2} + {n}^{2} \ne 0} \frac{1}{{\left(z + m + n \tau\right)}^{2}} - \frac{1}{{\left(m + n \tau\right)}^{2}}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, z \notin \Lambda_{(1, \tau)}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| WeierstrassP | Weierstrass elliptic function | |
| Pow | Power | |
| CC | Complex numbers | |
| HH | Upper complex half-plane | |
| Lattice | Complex lattice with periods a, b |
Source code for this entry:
Entry(ID("58d67b"),
Formula(Equal(WeierstrassP(z, tau), Add(Div(1, Pow(z, 2)), SumCondition(Sub(Div(1, Pow(Add(Add(z, m), Mul(n, tau)), 2)), Div(1, Pow(Add(m, Mul(n, tau)), 2))), Tuple(m, n), Unequal(Add(Pow(m, 2), Pow(n, 2)), 0))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))