Assumptions:
TeX:
W_{0}\!\left(z\right) = \sum_{n=1}^{\infty} \frac{{\left(-n\right)}^{n - 1}}{n !} {z}^{n}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z\right| \lt \frac{1}{e}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LambertW | Lambert W-function | |
| Pow | Power | |
| Factorial | Factorial | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Abs | Absolute value | |
| ConstE | The constant e (2.718...) |
Source code for this entry:
Entry(ID("58c19a"),
Formula(Equal(LambertW(0, z), Sum(Mul(Div(Pow(Neg(n), Sub(n, 1)), Factorial(n)), Pow(z, n)), Tuple(n, 1, Infinity)))),
Variables(z),
Assumptions(And(Element(z, CC), Less(Abs(z), Div(1, ConstE)))))