TeX:
B_{n} \sim {n}^{-1 / 2} {\left(\frac{n}{W\!\left(n\right)}\right)}^{n + 1 / 2} \exp\!\left(\frac{n}{W\!\left(n\right)} - n - 1\right), \; n \to \inftyDefinitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BellNumber | Bell number | |
| Pow | Power | |
| LambertW | Lambert W-function | |
| Exp | Exponential function | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("589758"),
Formula(AsymptoticTo(BellNumber(n), Mul(Mul(Pow(n, Neg(Div(1, 2))), Pow(Div(n, LambertW(n)), Add(n, Div(1, 2)))), Exp(Sub(Sub(Div(n, LambertW(n)), n), 1))), n, Infinity)))