Assumptions:
TeX:
\varphi\!\left(m n\right) = \frac{\varphi(m) \varphi(n) \gcd\!\left(m, n\right)}{\varphi\!\left(\gcd\!\left(m, n\right)\right)} m \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | Euler totient function | |
GCD | Greatest common divisor | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("56d7fe"), Formula(Equal(Totient(Mul(m, n)), Div(Mul(Mul(Totient(m), Totient(n)), GCD(m, n)), Totient(GCD(m, n))))), Variables(m, n), Assumptions(And(Element(m, ZZGreaterEqual(1)), Element(n, ZZGreaterEqual(1)))))