Fungrim home page

Fungrim entry: 563d18

θ1 ⁣(z+12,τ)=θ2 ⁣(z,τ)\theta_{1}\!\left(z + \frac{1}{2} , \tau\right) = \theta_{2}\!\left(z , \tau\right)
Assumptions:zC  and  τHz \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
TeX:
\theta_{1}\!\left(z + \frac{1}{2} , \tau\right) = \theta_{2}\!\left(z , \tau\right)

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("563d18"),
    Formula(Equal(JacobiTheta(1, Add(z, Div(1, 2)), tau), JacobiTheta(2, z, tau))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC