Assumptions:
TeX:
\frac{d^{2}}{{d z}^{2}} \log\!\left(\theta_{2}\!\left(z , \tau\right)\right) = {\pi}^{2} \sum_{n=-\infty}^{\infty} \frac{1}{\cos^{2}\!\left(\pi \left(z + n \tau\right)\right)} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \theta_{2}\!\left(z , \tau\right) \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexBranchDerivative | Complex derivative, allowing branch cuts | |
Log | Natural logarithm | |
JacobiTheta | Jacobi theta function | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
Sum | Sum | |
Cos | Cosine | |
Infinity | Positive infinity | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("561d75"), Formula(Equal(ComplexBranchDerivative(Log(JacobiTheta(2, z, tau)), For(z, z, 2)), Mul(Pow(Pi, 2), Sum(Div(1, Pow(Cos(Mul(Pi, Add(z, Mul(n, tau)))), 2)), For(n, Neg(Infinity), Infinity))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH), NotEqual(JacobiTheta(2, z, tau), 0))))