Assumptions:
TeX:
\theta_{2}\!\left(0 , \tau\right) \theta_{3}\!\left(0 , \tau\right) \theta_{4}\!\left(0 , \tau\right) = 2 \eta^{3}\!\left(\tau\right)
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Pow | Power | |
| DedekindEta | Dedekind eta function | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("557b19"),
Formula(Equal(Mul(Mul(JacobiTheta(2, 0, tau), JacobiTheta(3, 0, tau)), JacobiTheta(4, 0, tau)), Mul(2, Pow(DedekindEta(tau), 3)))),
Variables(tau),
Assumptions(Element(tau, HH)))