Assumptions:
TeX:
B_{n}\!\left(x\right) = \sum_{k=0}^{n} {n \choose k} B_{n - k} {x}^{k} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BernoulliPolynomial | Bernoulli polynomial | |
Sum | Sum | |
Binomial | Binomial coefficient | |
BernoulliB | Bernoulli number | |
Pow | Power | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("555e10"), Formula(Equal(BernoulliPolynomial(n, x), Sum(Mul(Mul(Binomial(n, k), BernoulliB(Sub(n, k))), Pow(x, k)), For(k, 0, n)))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, CC))))