Assumptions:
TeX:
\psi\!\left(z - n\right) = \psi\!\left(z\right) - \sum_{k=1}^{n} \frac{1}{z - k}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z - n \notin \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| Sum | Sum | |
| CC | Complex numbers | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("554ac2"),
Formula(Equal(DigammaFunction(Sub(z, n)), Sub(DigammaFunction(z), Sum(Div(1, Sub(z, k)), For(k, 1, n))))),
Variables(z, n),
Assumptions(And(Element(z, CC), Element(n, ZZGreaterEqual(0)), NotElement(Sub(z, n), ZZLessEqual(0)))))