Fungrim home page

Fungrim entry: 5540a1

G2k ⁣(τ)=3(2k+1)(k3)(2k1)r=2k2(2r1)(2k2r1)G2r ⁣(τ)G2k2r ⁣(τ)G_{2 k}\!\left(\tau\right) = \frac{3}{\left(2 k + 1\right) \left(k - 3\right) \left(2 k - 1\right)} \sum_{r=2}^{k - 2} \left(2 r - 1\right) \left(2 k - 2 r - 1\right) G_{2 r}\!\left(\tau\right) G_{2 k - 2 r}\!\left(\tau\right)
Assumptions:kZ4  and  τHk \in \mathbb{Z}_{\ge 4} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
References:
  • T. Apostol (1976), Modular Functions and Dirichlet Series in Number Theory, Springer. Theorem 1.13.
TeX:
G_{2 k}\!\left(\tau\right) = \frac{3}{\left(2 k + 1\right) \left(k - 3\right) \left(2 k - 1\right)} \sum_{r=2}^{k - 2} \left(2 r - 1\right) \left(2 k - 2 r - 1\right) G_{2 r}\!\left(\tau\right) G_{2 k - 2 r}\!\left(\tau\right)

k \in \mathbb{Z}_{\ge 4} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
EisensteinGGk ⁣(τ)G_{k}\!\left(\tau\right) Eisenstein series
Sumnf(n)\sum_{n} f(n) Sum
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("5540a1"),
    Formula(Equal(EisensteinG(Mul(2, k), tau), Mul(Div(3, Mul(Mul(Add(Mul(2, k), 1), Sub(k, 3)), Sub(Mul(2, k), 1))), Sum(Mul(Mul(Mul(Sub(Mul(2, r), 1), Sub(Sub(Mul(2, k), Mul(2, r)), 1)), EisensteinG(Mul(2, r), tau)), EisensteinG(Sub(Mul(2, k), Mul(2, r)), tau)), For(r, 2, Sub(k, 2)))))),
    Variables(k, tau),
    Assumptions(And(Element(k, ZZGreaterEqual(4)), Element(tau, HH))),
    References("T. Apostol (1976), Modular Functions and Dirichlet Series in Number Theory, Springer. Theorem 1.13."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC