Assumptions:
References:
- T. Apostol (1976), Modular Functions and Dirichlet Series in Number Theory, Springer. Theorem 1.13.
TeX:
G_{2 k}\!\left(\tau\right) = \frac{3}{\left(2 k + 1\right) \left(k - 3\right) \left(2 k - 1\right)} \sum_{r=2}^{k - 2} \left(2 r - 1\right) \left(2 k - 2 r - 1\right) G_{2 r}\!\left(\tau\right) G_{2 k - 2 r}\!\left(\tau\right)
k \in \mathbb{Z}_{\ge 4} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| EisensteinG | Eisenstein series | |
| Sum | Sum | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("5540a1"),
Formula(Equal(EisensteinG(Mul(2, k), tau), Mul(Div(3, Mul(Mul(Add(Mul(2, k), 1), Sub(k, 3)), Sub(Mul(2, k), 1))), Sum(Mul(Mul(Mul(Sub(Mul(2, r), 1), Sub(Sub(Mul(2, k), Mul(2, r)), 1)), EisensteinG(Mul(2, r), tau)), EisensteinG(Sub(Mul(2, k), Mul(2, r)), tau)), For(r, 2, Sub(k, 2)))))),
Variables(k, tau),
Assumptions(And(Element(k, ZZGreaterEqual(4)), Element(tau, HH))),
References("T. Apostol (1976), Modular Functions and Dirichlet Series in Number Theory, Springer. Theorem 1.13."))