Assumptions:
TeX:
\sin^{2 n}\!\left(z\right) = \frac{1}{{4}^{n}} {2 n \choose n} + \frac{2}{{4}^{n}} \sum_{k=0}^{n - 1} {\left(-1\right)}^{n + k} {2 n \choose k} \cos\!\left(2 \left(n - k\right) z\right)
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| Sin | Sine | |
| Binomial | Binomial coefficient | |
| CC | Complex numbers | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("54f420"),
Formula(Equal(Pow(Sin(z), Mul(2, n)), Add(Mul(Div(1, Pow(4, n)), Binomial(Mul(2, n), n)), Mul(Div(2, Pow(4, n)), Sum(Mul(Mul(Pow(-1, Add(n, k)), Binomial(Mul(2, n), k)), Cos(Mul(Mul(2, Sub(n, k)), z))), Tuple(k, 0, Sub(n, 1))))))),
Variables(z, n),
Assumptions(And(Element(z, CC), Element(n, ZZGreaterEqual(0)))))