Assumptions:
TeX:
\sin^{2 n}\!\left(z\right) = \frac{1}{{4}^{n}} {2 n \choose n} + \frac{2}{{4}^{n}} \sum_{k=0}^{n - 1} {\left(-1\right)}^{n + k} {2 n \choose k} \cos\!\left(2 \left(n - k\right) z\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
Sin | Sine | |
Binomial | Binomial coefficient | |
Sum | Sum | |
Cos | Cosine | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("54f420"), Formula(Equal(Pow(Sin(z), Mul(2, n)), Add(Mul(Div(1, Pow(4, n)), Binomial(Mul(2, n), n)), Mul(Div(2, Pow(4, n)), Sum(Mul(Mul(Pow(-1, Add(n, k)), Binomial(Mul(2, n), k)), Cos(Mul(Mul(2, Sub(n, k)), z))), For(k, 0, Sub(n, 1))))))), Variables(z, n), Assumptions(And(Element(z, CC), Element(n, ZZGreaterEqual(0)))))