Assumptions:
TeX:
G\!\left(z + 1\right) = {\left(2 \pi\right)}^{z / 2} {e}^{-\left( z + \left(\gamma + 1\right) {z}^{2} \right) / 2} \prod_{k=1}^{\infty} \left[{\left(1 + \frac{z}{k}\right)}^{k} \exp\!\left(\frac{{z}^{2}}{2 k} - z\right)\right]
z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BarnesG | Barnes G-function | |
| Pow | Power | |
| Pi | The constant pi (3.14...) | |
| Exp | Exponential function | |
| ConstGamma | The constant gamma (0.577...) | |
| Product | Product | |
| Infinity | Positive infinity | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("54d4e2"),
Formula(Equal(BarnesG(Add(z, 1)), Mul(Mul(Pow(Mul(2, Pi), Div(z, 2)), Exp(Neg(Div(Add(z, Mul(Add(ConstGamma, 1), Pow(z, 2))), 2)))), Product(Brackets(Mul(Pow(Add(1, Div(z, k)), k), Exp(Sub(Div(Pow(z, 2), Mul(2, k)), z)))), For(k, 1, Infinity))))),
Variables(z),
Assumptions(Element(z, CC)))