Assumptions:
TeX:
G\!\left(z + 1\right) = {\left(2 \pi\right)}^{z / 2} {e}^{-\left( z + \left(\gamma + 1\right) {z}^{2} \right) / 2} \prod_{k=1}^{\infty} \left[{\left(1 + \frac{z}{k}\right)}^{k} \exp\!\left(\frac{{z}^{2}}{2 k} - z\right)\right] z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BarnesG | Barnes G-function | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
Exp | Exponential function | |
ConstGamma | The constant gamma (0.577...) | |
Product | Product | |
Infinity | Positive infinity | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("54d4e2"), Formula(Equal(BarnesG(Add(z, 1)), Mul(Mul(Pow(Mul(2, Pi), Div(z, 2)), Exp(Neg(Div(Add(z, Mul(Add(ConstGamma, 1), Pow(z, 2))), 2)))), Product(Brackets(Mul(Pow(Add(1, Div(z, k)), k), Exp(Sub(Div(Pow(z, 2), Mul(2, k)), z)))), For(k, 1, Infinity))))), Variables(z), Assumptions(Element(z, CC)))