Assumptions:
References:
- V. V. Prasolov, Polynomials, Springer, 2004, ISBN 978-3-642-03980-5. Theorem 3.14.10.
TeX:
\left|{T}^{(r)}_{n - 1}(x)\right| \le \left|{T}^{(r)}_{n}(x)\right|
n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \left|x\right| \ge 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Abs | Absolute value | |
| ComplexDerivative | Complex derivative | |
| ChebyshevT | Chebyshev polynomial of the first kind | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| RR | Real numbers |
Source code for this entry:
Entry(ID("54be3e"),
Formula(LessEqual(Abs(ComplexDerivative(ChebyshevT(Sub(n, 1), x), For(x, x, r))), Abs(ComplexDerivative(ChebyshevT(n, x), For(x, x, r))))),
Variables(n, r, x),
Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, RR), GreaterEqual(Abs(x), 1))),
References("V. V. Prasolov, Polynomials, Springer, 2004, ISBN 978-3-642-03980-5. Theorem 3.14.10."))