Assumptions:
TeX:
\psi^{(m)}\!\left(z\right) = -\int_{0}^{1} \frac{{t}^{z - 1}}{1 - t} \log^{m}\!\left(t\right) \, dt
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0 \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| Integral | Integral | |
| Pow | Power | |
| Log | Natural logarithm | |
| CC | Complex numbers | |
| Re | Real part | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("547fcd"),
Formula(Equal(DigammaFunction(z, m), Neg(Integral(Mul(Div(Pow(t, Sub(z, 1)), Sub(1, t)), Pow(Log(t), m)), For(t, 0, 1))))),
Variables(z, m),
Assumptions(And(Element(z, CC), Greater(Re(z), 0), Element(m, ZZGreaterEqual(1)))))