Assumptions:
References:
- https://doi.org/10.1145/384101.384104
TeX:
G\!\left(1 - x\right) = {\left(-1\right)}^{\left\lfloor \left( x - 1 \right) / 2 \right\rfloor + 1} G\!\left(1 + x\right) {\left(\frac{\left|\sin\!\left(\pi x\right)\right|}{\pi}\right)}^{x} \exp\!\left(\frac{1}{2 \pi} \operatorname{Im}\!\left(\operatorname{Li}_{2}\!\left({e}^{2 \pi i x}\right)\right)\right)
x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \notin \{-1, -2, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BarnesG | Barnes G-function | |
| Pow | Power | |
| Abs | Absolute value | |
| Sin | Sine | |
| Pi | The constant pi (3.14...) | |
| Exp | Exponential function | |
| Im | Imaginary part | |
| ConstI | Imaginary unit | |
| RR | Real numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("541e2e"),
Formula(Equal(BarnesG(Sub(1, x)), Mul(Mul(Mul(Pow(-1, Add(Floor(Div(Sub(x, 1), 2)), 1)), BarnesG(Add(1, x))), Pow(Div(Abs(Sin(Mul(Pi, x))), Pi), x)), Exp(Mul(Div(1, Mul(2, Pi)), Im(PolyLog(2, Exp(Mul(Mul(Mul(2, Pi), ConstI), x))))))))),
Variables(x),
Assumptions(And(Element(x, RR), NotElement(x, ZZLessEqual(-1)))),
References("https://doi.org/10.1145/384101.384104"))