Fungrim home page

Fungrim entry: 541e2e

G ⁣(1x)=(1)(x1)/2+1G ⁣(1+x)(sin ⁣(πx)π)xexp ⁣(12πIm ⁣(Li2 ⁣(e2πix)))G\!\left(1 - x\right) = {\left(-1\right)}^{\left\lfloor \left( x - 1 \right) / 2 \right\rfloor + 1} G\!\left(1 + x\right) {\left(\frac{\left|\sin\!\left(\pi x\right)\right|}{\pi}\right)}^{x} \exp\!\left(\frac{1}{2 \pi} \operatorname{Im}\!\left(\operatorname{Li}_{2}\!\left({e}^{2 \pi i x}\right)\right)\right)
Assumptions:xR  and  x{1,2,}x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \notin \{-1, -2, \ldots\}
References:
  • https://doi.org/10.1145/384101.384104
TeX:
G\!\left(1 - x\right) = {\left(-1\right)}^{\left\lfloor \left( x - 1 \right) / 2 \right\rfloor + 1} G\!\left(1 + x\right) {\left(\frac{\left|\sin\!\left(\pi x\right)\right|}{\pi}\right)}^{x} \exp\!\left(\frac{1}{2 \pi} \operatorname{Im}\!\left(\operatorname{Li}_{2}\!\left({e}^{2 \pi i x}\right)\right)\right)

x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \notin \{-1, -2, \ldots\}
Definitions:
Fungrim symbol Notation Short description
BarnesGG(z)G(z) Barnes G-function
Powab{a}^{b} Power
Absz\left|z\right| Absolute value
Sinsin(z)\sin(z) Sine
Piπ\pi The constant pi (3.14...)
Expez{e}^{z} Exponential function
ImIm(z)\operatorname{Im}(z) Imaginary part
ConstIii Imaginary unit
RRR\mathbb{R} Real numbers
ZZLessEqualZn\mathbb{Z}_{\le n} Integers less than or equal to n
Source code for this entry:
Entry(ID("541e2e"),
    Formula(Equal(BarnesG(Sub(1, x)), Mul(Mul(Mul(Pow(-1, Add(Floor(Div(Sub(x, 1), 2)), 1)), BarnesG(Add(1, x))), Pow(Div(Abs(Sin(Mul(Pi, x))), Pi), x)), Exp(Mul(Div(1, Mul(2, Pi)), Im(PolyLog(2, Exp(Mul(Mul(Mul(2, Pi), ConstI), x))))))))),
    Variables(x),
    Assumptions(And(Element(x, RR), NotElement(x, ZZLessEqual(-1)))),
    References("https://doi.org/10.1145/384101.384104"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC