Fungrim home page

Fungrim entry: 5404ce

Table of π ⁣(10n)\pi\!\left({10}^{n}\right) for 0n270 \le n \le 27
nn π ⁣(10n)\pi\!\left({10}^{n}\right)
00
14
225
3168
41229
59592
678498
7664579
85761455
950847534
10455052511
114118054813
1237607912018
13346065536839
nn π ⁣(10n)\pi\!\left({10}^{n}\right)
143204941750802
1529844570422669
16279238341033925
172623557157654233
1824739954287740860
19234057667276344607
202220819602560918840
2121127269486018731928
22201467286689315906290
231925320391606803968923
2418435599767349200867866
25176846309399143769411680
261699246750872437141327603
2716352460426841680446427399
Definitions:
Fungrim symbol Notation Short description
PrimePiπ(x)\pi(x) Prime counting function
Powab{a}^{b} Power
Source code for this entry:
Entry(ID("5404ce"),
    Description("Table of", PrimePi(Pow(10, n)), "for", LessEqual(0, n, 27)),
    Table(Var(n), TableValueHeadings(n, PrimePi(Pow(10, n))), TableSplit(2), List(Tuple(0, 0), Tuple(1, 4), Tuple(2, 25), Tuple(3, 168), Tuple(4, 1229), Tuple(5, 9592), Tuple(6, 78498), Tuple(7, 664579), Tuple(8, 5761455), Tuple(9, 50847534), Tuple(10, 455052511), Tuple(11, 4118054813), Tuple(12, 37607912018), Tuple(13, 346065536839), Tuple(14, 3204941750802), Tuple(15, 29844570422669), Tuple(16, 279238341033925), Tuple(17, 2623557157654233), Tuple(18, 24739954287740860), Tuple(19, 234057667276344607), Tuple(20, 2220819602560918840), Tuple(21, 21127269486018731928), Tuple(22, 201467286689315906290), Tuple(23, 1925320391606803968923), Tuple(24, 18435599767349200867866), Tuple(25, 176846309399143769411680), Tuple(26, 1699246750872437141327603), Tuple(27, 16352460426841680446427399))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC