Assumptions:
TeX:
R_{n}\!\left(z\right) = \int_{0}^{\infty} \frac{B_{2 n} - B_{2 n}\!\left(t - \left\lfloor t \right\rfloor\right)}{2 n {\left(z + t\right)}^{2 n}} \, dt
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \notin \left(-\infty, 0\right] \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| StirlingSeriesRemainder | Remainder term in the Stirling series for the logarithmic gamma function | |
| BernoulliB | Bernoulli number | |
| BernoulliPolynomial | Bernoulli polynomial | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("53a2a1"),
Formula(Equal(StirlingSeriesRemainder(n, z), Integral(Div(Sub(BernoulliB(Mul(2, n)), BernoulliPolynomial(Mul(2, n), Sub(t, Floor(t)))), Mul(Mul(2, n), Pow(Add(z, t), Mul(2, n)))), Tuple(t, 0, Infinity)))),
Variables(z, n),
Assumptions(And(Element(z, CC), NotElement(z, OpenClosedInterval(Neg(Infinity), 0)), Element(n, ZZGreaterEqual(1)))))