Assumptions:
TeX:
R_F\!\left(0, x, c x\right) = \frac{K\!\left(1 - c\right)}{\sqrt{x}}
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \left[0, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
| EllipticK | Legendre complete elliptic integral of the first kind | |
| Sqrt | Principal square root | |
| CC | Complex numbers | |
| ClosedOpenInterval | Closed-open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("538c8c"),
Formula(Equal(CarlsonRF(0, x, Mul(c, x)), Div(EllipticK(Sub(1, c)), Sqrt(x)))),
Variables(x, c),
Assumptions(And(Element(x, CC), Element(c, ClosedOpenInterval(0, Infinity)))))