Assumptions:
TeX:
\frac{z}{{e}^{z} - 1} = \sum_{n=0}^{\infty} B_{n} \frac{{z}^{n}}{n !} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 2 \pi \;\mathbin{\operatorname{and}}\; z \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Exp | Exponential function | |
Sum | Sum | |
BernoulliB | Bernoulli number | |
Pow | Power | |
Factorial | Factorial | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Abs | Absolute value | |
Pi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("522b04"), Formula(Equal(Div(z, Sub(Exp(z), 1)), Sum(Mul(BernoulliB(n), Div(Pow(z, n), Factorial(n))), For(n, 0, Infinity)))), Variables(z), Assumptions(And(Element(z, CC), Less(Abs(z), Mul(2, Pi)), NotEqual(z, 0))))