Assumptions:
TeX:
\frac{z}{{e}^{z} - 1} = \sum_{n=0}^{\infty} B_{n} \frac{{z}^{n}}{n !}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 2 \pi \;\mathbin{\operatorname{and}}\; z \ne 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Exp | Exponential function | |
| Sum | Sum | |
| BernoulliB | Bernoulli number | |
| Pow | Power | |
| Factorial | Factorial | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Abs | Absolute value | |
| Pi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("522b04"),
Formula(Equal(Div(z, Sub(Exp(z), 1)), Sum(Mul(BernoulliB(n), Div(Pow(z, n), Factorial(n))), For(n, 0, Infinity)))),
Variables(z),
Assumptions(And(Element(z, CC), Less(Abs(z), Mul(2, Pi)), NotEqual(z, 0))))