Assumptions:
TeX:
\zeta\!\left(-n\right) = \frac{{\left(-1\right)}^{n} B_{n + 1}}{n + 1}
n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \ge 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RiemannZeta | Riemann zeta function | |
| Pow | Power | |
| BernoulliB | Bernoulli number | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("51fd98"),
Formula(Equal(RiemannZeta(Neg(n)), Div(Mul(Pow(-1, n), BernoulliB(Add(n, 1))), Add(n, 1)))),
Variables(n),
Assumptions(And(Element(n, ZZ), GreaterEqual(n, 0))))