Assumptions:
TeX:
G_{2}\!\left(\frac{a \tau + b}{c \tau + d}\right) = {\left(c \tau + d\right)}^{2} G_{2}\!\left(\tau\right) - 2 \pi i c \left(c \tau + d\right)
\tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| EisensteinG | Eisenstein series | |
| Pow | Power | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| HH | Upper complex half-plane | |
| Matrix2x2 | Two by two matrix | |
| SL2Z | Modular group |
Source code for this entry:
Entry(ID("5161ab"),
Formula(Equal(EisensteinG(2, Div(Add(Mul(a, tau), b), Add(Mul(c, tau), d))), Sub(Mul(Pow(Add(Mul(c, tau), d), 2), EisensteinG(2, tau)), Mul(Mul(Mul(Mul(2, Pi), ConstI), c), Add(Mul(c, tau), d))))),
Variables(tau, a, b, c, d),
Assumptions(And(Element(tau, HH), Element(Matrix2x2(a, b, c, d), SL2Z))))