Fungrim home page

Fungrim entry: 503d4d

atan ⁣(x)atan ⁣(y)=atan ⁣(xy1+xy)\operatorname{atan}\!\left(x\right) - \operatorname{atan}\!\left(y\right) = \operatorname{atan}\!\left(\frac{x - y}{1 + x y}\right)
Assumptions:xCandyCandx<1andy<1x \in \mathbb{C} \,\mathbin{\operatorname{and}}\, y \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|x\right| \lt 1 \,\mathbin{\operatorname{and}}\, \left|y\right| \lt 1
Alternative assumptions:xRandyRandxy>1x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R} \,\mathbin{\operatorname{and}}\, x y \gt -1
TeX:
\operatorname{atan}\!\left(x\right) - \operatorname{atan}\!\left(y\right) = \operatorname{atan}\!\left(\frac{x - y}{1 + x y}\right)

x \in \mathbb{C} \,\mathbin{\operatorname{and}}\, y \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|x\right| \lt 1 \,\mathbin{\operatorname{and}}\, \left|y\right| \lt 1

x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R} \,\mathbin{\operatorname{and}}\, x y \gt -1
Definitions:
Fungrim symbol Notation Short description
Atanatan ⁣(z)\operatorname{atan}\!\left(z\right) Inverse tangent
CCC\mathbb{C} Complex numbers
Absz\left|z\right| Absolute value
RRR\mathbb{R} Real numbers
Source code for this entry:
Entry(ID("503d4d"),
    Formula(Equal(Sub(Atan(x), Atan(y)), Atan(Div(Sub(x, y), Add(1, Mul(x, y)))))),
    Variables(x, y),
    Assumptions(And(Element(x, CC), Element(y, CC), Less(Abs(x), 1), Less(Abs(y), 1)), And(Element(x, RR), Element(y, RR), Greater(Mul(x, y), -1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC