Assumptions:
TeX:
\psi\!\left(z\right) = \log(z) - \frac{1}{2 z} - \int_{0}^{\infty} {e}^{-z t} \left(\frac{1}{2} - \frac{1}{t} + \frac{1}{{e}^{t} - 1}\right) \, dt z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
Log | Natural logarithm | |
Integral | Integral | |
Exp | Exponential function | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("4f5575"), Formula(Equal(DigammaFunction(z), Sub(Sub(Log(z), Div(1, Mul(2, z))), Integral(Mul(Exp(Neg(Mul(z, t))), Parentheses(Add(Sub(Div(1, 2), Div(1, t)), Div(1, Sub(Exp(t), 1))))), For(t, 0, Infinity))))), Variables(z), Assumptions(And(Element(z, CC), Greater(Re(z), 0))))