Assumptions:
TeX:
T_{n}\!\left(x\right) = \frac{n}{2} \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} \frac{{\left(-1\right)}^{k} \left(n - k - 1\right)!}{k ! \left(n - 2 k\right)!} {\left(2 x\right)}^{n - 2 k} n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Chebyshev polynomial of the first kind | |
Sum | Sum | |
Pow | Power | |
Factorial | Factorial | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("4f3e30"), Formula(Equal(ChebyshevT(n, x), Mul(Div(n, 2), Sum(Mul(Div(Mul(Pow(-1, k), Factorial(Sub(Sub(n, k), 1))), Mul(Factorial(k), Factorial(Sub(n, Mul(2, k))))), Pow(Mul(2, x), Sub(n, Mul(2, k)))), For(k, 0, Floor(Div(n, 2))))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))