Fungrim home page

Fungrim entry: 4ec333

#{k:kZ  and  nFk}=#Z\# \left\{ k : k \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \mid F_{k} \right\} = \# \mathbb{Z}
Assumptions:nZ{0}n \in \mathbb{Z} \setminus \left\{0\right\}
TeX:
\# \left\{ k : k \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \mid F_{k} \right\} = \# \mathbb{Z}

n \in \mathbb{Z} \setminus \left\{0\right\}
Definitions:
Fungrim symbol Notation Short description
Cardinality#S\# S Set cardinality
ZZZ\mathbb{Z} Integers
FibonacciFnF_{n} Fibonacci number
Source code for this entry:
Entry(ID("4ec333"),
    Formula(Equal(Cardinality(Set(k, For(k), And(Element(k, ZZ), Divides(n, Fibonacci(k))))), Cardinality(ZZ))),
    Variables(n),
    Assumptions(Element(n, SetMinus(ZZ, Set(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC