Fungrim home page

Fungrim entry: 4eac3f

RJ ⁣(x+λ,y+λ,λ,w+λ)+RJ ⁣(x+μ,y+μ,μ,w+μ)=RJ ⁣(x,y,0,w)3RC ⁣(w2(λ+μ+x+y),w(w+λ)(w+μ))   where μ=xyλR_J\!\left(x + \lambda, y + \lambda, \lambda, w + \lambda\right) + R_J\!\left(x + \mu, y + \mu, \mu, w + \mu\right) = R_J\!\left(x, y, 0, w\right) - 3 R_C\!\left({w}^{2} \left(\lambda + \mu + x + y\right), w \left(w + \lambda\right) \left(w + \mu\right)\right)\; \text{ where } \mu = \frac{x y}{\lambda}
Assumptions:x(0,)  and  y(0,)  and  w(0,)  and  λC(,0]x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; w \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; \lambda \in \mathbb{C} \setminus \left(-\infty, 0\right]
TeX:
R_J\!\left(x + \lambda, y + \lambda, \lambda, w + \lambda\right) + R_J\!\left(x + \mu, y + \mu, \mu, w + \mu\right) = R_J\!\left(x, y, 0, w\right) - 3 R_C\!\left({w}^{2} \left(\lambda + \mu + x + y\right), w \left(w + \lambda\right) \left(w + \mu\right)\right)\; \text{ where } \mu = \frac{x y}{\lambda}

x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; w \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; \lambda \in \mathbb{C} \setminus \left(-\infty, 0\right]
Definitions:
Fungrim symbol Notation Short description
CarlsonRJRJ ⁣(x,y,z,w)R_J\!\left(x, y, z, w\right) Carlson symmetric elliptic integral of the third kind
CarlsonRCRC ⁣(x,y)R_C\!\left(x, y\right) Degenerate Carlson symmetric elliptic integral of the first kind
Powab{a}^{b} Power
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Source code for this entry:
Entry(ID("4eac3f"),
    Formula(Where(Equal(Add(CarlsonRJ(Add(x, lamda), Add(y, lamda), lamda, Add(w, lamda)), CarlsonRJ(Add(x, mu), Add(y, mu), mu, Add(w, mu))), Sub(CarlsonRJ(x, y, 0, w), Mul(3, CarlsonRC(Mul(Pow(w, 2), Add(Add(Add(lamda, mu), x), y)), Mul(Mul(w, Add(w, lamda)), Add(w, mu)))))), Def(mu, Div(Mul(x, y), lamda)))),
    Variables(x, y, w, lamda),
    Assumptions(And(Element(x, OpenInterval(0, Infinity)), Element(y, OpenInterval(0, Infinity)), Element(w, OpenInterval(0, Infinity)), Element(lamda, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC