Assumptions:
TeX:
R_J\!\left(x + \lambda, y + \lambda, \lambda, w + \lambda\right) + R_J\!\left(x + \mu, y + \mu, \mu, w + \mu\right) = R_J\!\left(x, y, 0, w\right) - 3 R_C\!\left({w}^{2} \left(\lambda + \mu + x + y\right), w \left(w + \lambda\right) \left(w + \mu\right)\right)\; \text{ where } \mu = \frac{x y}{\lambda} x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; w \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; \lambda \in \mathbb{C} \setminus \left(-\infty, 0\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRJ | Carlson symmetric elliptic integral of the third kind | |
CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
Pow | Power | |
OpenInterval | Open interval | |
Infinity | Positive infinity | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("4eac3f"), Formula(Where(Equal(Add(CarlsonRJ(Add(x, lamda), Add(y, lamda), lamda, Add(w, lamda)), CarlsonRJ(Add(x, mu), Add(y, mu), mu, Add(w, mu))), Sub(CarlsonRJ(x, y, 0, w), Mul(3, CarlsonRC(Mul(Pow(w, 2), Add(Add(Add(lamda, mu), x), y)), Mul(Mul(w, Add(w, lamda)), Add(w, mu)))))), Def(mu, Div(Mul(x, y), lamda)))), Variables(x, y, w, lamda), Assumptions(And(Element(x, OpenInterval(0, Infinity)), Element(y, OpenInterval(0, Infinity)), Element(w, OpenInterval(0, Infinity)), Element(lamda, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))