Assumptions:
TeX:
U_{n}\!\left(x\right) = \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} {n + 1 \choose 2 k + 1} {\left({x}^{2} - 1\right)}^{k} {x}^{n - 2 k}
n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevU | Chebyshev polynomial of the second kind | |
| Sum | Sum | |
| Binomial | Binomial coefficient | |
| Pow | Power | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("4e914f"),
Formula(Equal(ChebyshevU(n, x), Sum(Mul(Mul(Binomial(Add(n, 1), Add(Mul(2, k), 1)), Pow(Sub(Pow(x, 2), 1), k)), Pow(x, Sub(n, Mul(2, k)))), For(k, 0, Floor(Div(n, 2)))))),
Variables(n, x),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, CC))))