Assumptions:
TeX:
U_{n}\!\left(x\right) = \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} {n + 1 \choose 2 k + 1} {\left({x}^{2} - 1\right)}^{k} {x}^{n - 2 k} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Chebyshev polynomial of the second kind | |
Sum | Sum | |
Binomial | Binomial coefficient | |
Pow | Power | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("4e914f"), Formula(Equal(ChebyshevU(n, x), Sum(Mul(Mul(Binomial(Add(n, 1), Add(Mul(2, k), 1)), Pow(Sub(Pow(x, 2), 1), k)), Pow(x, Sub(n, Mul(2, k)))), For(k, 0, Floor(Div(n, 2)))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, CC))))