Assumptions:
TeX:
{n \choose k} \le \frac{{n}^{n}}{{k}^{k} {\left(n - k\right)}^{n - k}}
n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, k \in \{0, 1, \ldots n\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Binomial | Binomial coefficient | |
| Pow | Power | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| ZZBetween | Integers between a and b inclusive |
Source code for this entry:
Entry(ID("4e7120"),
Formula(LessEqual(Binomial(n, k), Div(Pow(n, n), Mul(Pow(k, k), Pow(Sub(n, k), Sub(n, k)))))),
Variables(n, k),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(k, ZZBetween(0, n)))))