Assumptions:
TeX:
{n \choose k} \le \frac{{n}^{n}}{{k}^{k} {\left(n - k\right)}^{n - k}} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; k \in \{0, 1, \ldots, n\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Binomial | Binomial coefficient | |
Pow | Power | |
ZZGreaterEqual | Integers greater than or equal to n | |
Range | Integers between given endpoints |
Source code for this entry:
Entry(ID("4e7120"), Formula(LessEqual(Binomial(n, k), Div(Pow(n, n), Mul(Pow(k, k), Pow(Sub(n, k), Sub(n, k)))))), Variables(n, k), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(k, Range(0, n)))))