Assumptions:
TeX:
\Gamma(z) = \int_{0}^{\infty} {t}^{z - 1} {e}^{-t} \, dt z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Gamma | Gamma function | |
Integral | Integral | |
Pow | Power | |
Exp | Exponential function | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("4e4e0f"), Formula(Equal(Gamma(z), Integral(Mul(Pow(t, Sub(z, 1)), Exp(Neg(t))), For(t, 0, Infinity)))), Variables(z), Assumptions(And(Element(z, CC), Greater(Re(z), 0))))