Assumptions:
TeX:
\sum_{n=1}^{\infty} \psi\!\left(n\right) {z}^{n} = \frac{z \left(\gamma + \log\!\left(1 - z\right)\right)}{z - 1}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| DigammaFunction | Digamma function | |
| Pow | Power | |
| Infinity | Positive infinity | |
| ConstGamma | The constant gamma (0.577...) | |
| Log | Natural logarithm | |
| CC | Complex numbers | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("4e3853"),
Formula(Equal(Sum(Mul(DigammaFunction(n), Pow(z, n)), For(n, 1, Infinity)), Div(Mul(z, Add(ConstGamma, Log(Sub(1, z)))), Sub(z, 1)))),
Variables(z),
Assumptions(And(Element(z, CC), Less(Abs(z), 1))))