Assumptions:
References:
- K. Ono (2004), Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, American Mathematical Society. Theorem 1.67.
TeX:
E_{4}\!\left(\tau\right) = \frac{\eta^{16}\!\left(\tau\right)}{\eta^{8}\!\left(2 \tau\right)} + 256 \frac{\eta^{16}\!\left(2 \tau\right)}{\eta^{8}\!\left(\tau\right)} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EisensteinE | Normalized Eisenstein series | |
Pow | Power | |
DedekindEta | Dedekind eta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("4da2cd"), Formula(Equal(EisensteinE(4, tau), Add(Div(Pow(DedekindEta(tau), 16), Pow(DedekindEta(Mul(2, tau)), 8)), Mul(256, Div(Pow(DedekindEta(Mul(2, tau)), 16), Pow(DedekindEta(tau), 8)))))), Variables(tau), Assumptions(Element(tau, HH)), References("K. Ono (2004), Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, American Mathematical Society. Theorem 1.67."))