Assumptions:
References:
- Hans Rademacher (1973), Topics in Analytic Number Theory, Springer. Sections 80, 81.
TeX:
\theta_{j}\!\left(z , \frac{a \tau + b}{c \tau + d}\right) = \varepsilon_{j}\!\left(a, b, c, d\right) \sqrt{\frac{v}{i}} {e}^{\pi i c v {z}^{2}} \theta_{S_{j}\!\left(a, b, c, d\right)}\!\left(v z , \tau\right)\; \text{ where } v = c \tau + d j \in \left\{1, 2, 3, 4\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{PSL}_2(\mathbb{Z})
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
JacobiThetaEpsilon | Root of unity in modular transformation of Jacobi theta functions | |
Sqrt | Principal square root | |
ConstI | Imaginary unit | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
Pow | Power | |
JacobiThetaPermutation | Index permutation in modular transformation of Jacobi theta functions | |
CC | Complex numbers | |
HH | Upper complex half-plane | |
Matrix2x2 | Two by two matrix | |
PSL2Z | Modular group (canonical representatives) |
Source code for this entry:
Entry(ID("4d8b0f"), Formula(Equal(JacobiTheta(j, z, Div(Add(Mul(a, tau), b), Add(Mul(c, tau), d))), Where(Mul(Mul(Mul(JacobiThetaEpsilon(j, a, b, c, d), Sqrt(Div(v, ConstI))), Exp(Mul(Mul(Mul(Mul(Pi, ConstI), c), v), Pow(z, 2)))), JacobiTheta(JacobiThetaPermutation(j, a, b, c, d), Mul(v, z), tau)), Equal(v, Add(Mul(c, tau), d))))), Variables(j, z, tau, a, b, c, d), Assumptions(And(Element(j, Set(1, 2, 3, 4)), Element(z, CC), Element(tau, HH), Element(Matrix2x2(a, b, c, d), PSL2Z))), References("Hans Rademacher (1973), Topics in Analytic Number Theory, Springer. Sections 80, 81."))