Assumptions:
TeX:
\theta_{4}^{8}\!\left(0, \tau\right) = 1 + 16 \sum_{n=1}^{\infty} \frac{{\left(-1\right)}^{n} {n}^{3} {q}^{n}}{1 - {q}^{n}}\; \text{ where } q = {e}^{\pi i \tau}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| Sum | Sum | |
| Infinity | Positive infinity | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("4d26ec"),
Formula(Equal(Pow(JacobiTheta(4, 0, tau), 8), Where(Add(1, Mul(16, Sum(Div(Mul(Mul(Pow(-1, n), Pow(n, 3)), Pow(q, n)), Sub(1, Pow(q, n))), For(n, 1, Infinity)))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))),
Variables(tau),
Assumptions(Element(tau, HH)))