Assumptions:
TeX:
\zeta\!\left(s, \frac{1}{6}\right) + \zeta\!\left(s, \frac{5}{6}\right) = \left({2}^{s} - 1\right) \left({3}^{s} - 1\right) \zeta\!\left(s\right)
s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \ne 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| HurwitzZeta | Hurwitz zeta function | |
| Pow | Power | |
| RiemannZeta | Riemann zeta function | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("4d1f6b"),
Formula(Equal(Add(HurwitzZeta(s, Div(1, 6)), HurwitzZeta(s, Div(5, 6))), Mul(Mul(Sub(Pow(2, s), 1), Sub(Pow(3, s), 1)), RiemannZeta(s)))),
Variables(s),
Assumptions(And(Element(s, CC), NotEqual(s, 1))))