Assumptions:
TeX:
{z \choose k} = \sum_{i=0}^{k} s\!\left(k, i\right) \frac{{z}^{i}}{k !}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Binomial | Binomial coefficient | |
| Sum | Sum | |
| StirlingS1 | Signed Stirling number of the first kind | |
| Pow | Power | |
| Factorial | Factorial | |
| CC | Complex numbers | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("4d1365"),
Formula(Equal(Binomial(z, k), Sum(Mul(StirlingS1(k, i), Div(Pow(z, i), Factorial(k))), For(i, 0, k)))),
Variables(z, k),
Assumptions(And(Element(z, CC), Element(k, ZZGreaterEqual(0)))))