Assumptions:
TeX:
{z \choose k} = \sum_{i=0}^{k} s\!\left(k, i\right) \frac{{z}^{i}}{k !} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Binomial | Binomial coefficient | |
Sum | Sum | |
StirlingS1 | Signed Stirling number of the first kind | |
Pow | Power | |
Factorial | Factorial | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("4d1365"), Formula(Equal(Binomial(z, k), Sum(Mul(StirlingS1(k, i), Div(Pow(z, i), Factorial(k))), For(i, 0, k)))), Variables(z, k), Assumptions(And(Element(z, CC), Element(k, ZZGreaterEqual(0)))))