Assumptions:
Alternative assumptions:
TeX:
P_{n}\!\left(z\right) = \frac{1}{{2}^{n} n !} \left[ \frac{d^{n}}{{d t}^{n}} {\left({t}^{2} - 1\right)}^{n} \right]_{t = z} n \in \mathbb{Z}_{\ge 0} z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LegendrePolynomial | Legendre polynomial | |
Pow | Power | |
Factorial | Factorial | |
Derivative | Derivative | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("4cfeac"), Formula(Equal(LegendrePolynomial(n, z), Mul(Div(1, Mul(Pow(2, n), Factorial(n))), Derivative(Pow(Sub(Pow(t, 2), 1), n), Tuple(t, z, n))))), Variables(n, z), Assumptions(And(Element(n, ZZGreaterEqual(0))), Element(z, CC)))