Assumptions:
Alternative assumptions:
TeX:
P_{n}\!\left(z\right) = \frac{1}{{2}^{n} n !} \left[ \frac{d^{n}}{{d t}^{n}} {\left({t}^{2} - 1\right)}^{n} \right]_{t = z}
n \in \mathbb{Z}_{\ge 0}
z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LegendrePolynomial | Legendre polynomial | |
| Pow | Power | |
| Factorial | Factorial | |
| Derivative | Derivative | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("4cfeac"),
Formula(Equal(LegendrePolynomial(n, z), Mul(Div(1, Mul(Pow(2, n), Factorial(n))), Derivative(Pow(Sub(Pow(t, 2), 1), n), Tuple(t, z, n))))),
Variables(n, z),
Assumptions(And(Element(n, ZZGreaterEqual(0))), Element(z, CC)))