Fungrim home page

Fungrim entry: 4c7aeb

Un ⁣(cos(x))sin(x)=sin ⁣(nx)U_{n}\!\left(\cos(x)\right) \sin(x) = \sin\!\left(n x\right)
Assumptions:nZ  and  xCn \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
TeX:
U_{n}\!\left(\cos(x)\right) \sin(x) = \sin\!\left(n x\right)

n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
ChebyshevUUn ⁣(x)U_{n}\!\left(x\right) Chebyshev polynomial of the second kind
Coscos(z)\cos(z) Cosine
Sinsin(z)\sin(z) Sine
ZZZ\mathbb{Z} Integers
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("4c7aeb"),
    Formula(Equal(Mul(ChebyshevU(n, Cos(x)), Sin(x)), Sin(Mul(n, x)))),
    Variables(n, x),
    Assumptions(And(Element(n, ZZ), Element(x, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC