Assumptions:
TeX:
\theta_{1}\!\left(z , \tau\right) = -i {e}^{\pi i \left(z + \tau / 4\right)} \theta_{4}\!\left(z + \frac{1}{2} \tau , \tau\right)
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| ConstI | Imaginary unit | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("4c462b"),
Formula(Equal(JacobiTheta(1, z, tau), Mul(Mul(Neg(ConstI), Exp(Mul(Mul(Pi, ConstI), Add(z, Div(tau, 4))))), JacobiTheta(4, Add(z, Mul(Div(1, 2), tau)), tau)))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))