Assumptions:
TeX:
\,{}_0F_1\!\left(a, z\right) = \sum_{k=0}^{\infty} \frac{1}{\left(a\right)_{k}} \frac{{z}^{k}}{k !} a \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric0F1 | Confluent hypergeometric limit function | |
Sum | Sum | |
RisingFactorial | Rising factorial | |
Pow | Power | |
Factorial | Factorial | |
Infinity | Positive infinity | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("4c41ad"), Formula(Equal(Hypergeometric0F1(a, z), Sum(Mul(Div(1, RisingFactorial(a, k)), Div(Pow(z, k), Factorial(k))), For(k, 0, Infinity)))), Variables(a, z), Assumptions(And(Element(a, SetMinus(CC, ZZLessEqual(0))), Element(z, CC))))