Assumptions:
TeX:
B_{n} = \sum_{k=1}^{n} \frac{{k}^{n}}{k !} \sum_{j=0}^{n - k} \frac{{\left(-1\right)}^{j}}{j !}
n \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BellNumber | Bell number | |
| Sum | Sum | |
| Pow | Power | |
| Factorial | Factorial | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("4b65d0"),
Formula(Equal(BellNumber(n), Sum(Mul(Div(Pow(k, n), Factorial(k)), Sum(Div(Pow(-1, j), Factorial(j)), For(j, 0, Sub(n, k)))), For(k, 1, n)))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(1))))