This mapping is one-to-one.
References:
- J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987. p. 118.
TeX:
\left\{ \lambda(\tau) : \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, \operatorname{Re}(\tau) = -1 \right\} = \left(-\infty, 0\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ModularLambda | Modular lambda function | |
HH | Upper complex half-plane | |
Re | Real part | |
OpenInterval | Open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("4b20ab"), Formula(Equal(Set(ModularLambda(tau), ForElement(tau, HH), Equal(Re(tau), -1)), OpenInterval(Neg(Infinity), 0))), Description("This mapping is one-to-one."), References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987. p. 118."))