TeX:
K\!\left(\frac{4 - 3 \sqrt{2}}{8}\right) = \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{4 \cdot {2}^{1 / 4} \sqrt{\pi}}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EllipticK | Legendre complete elliptic integral of the first kind | |
Sqrt | Principal square root | |
Pow | Power | |
Gamma | Gamma function | |
Pi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("4b040d"), Formula(Equal(EllipticK(Div(Sub(4, Mul(3, Sqrt(2))), 8)), Div(Pow(Gamma(Div(1, 4)), 2), Mul(Mul(4, Pow(2, Div(1, 4))), Sqrt(Pi))))))