Assumptions:
TeX:
\sum_{k=1}^{m} {k}^{n} = \frac{B_{n + 1}\!\left(m + 1\right) - B_{m + 1}}{m + 1} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Pow | Power | |
BernoulliPolynomial | Bernoulli polynomial | |
BernoulliB | Bernoulli number | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("4aab8a"), Formula(Equal(Sum(Pow(k, n), For(k, 1, m)), Div(Sub(BernoulliPolynomial(Add(n, 1), Add(m, 1)), BernoulliB(Add(m, 1))), Add(m, 1)))), Variables(n, m), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))