Assumptions:
TeX:
C_{\ell}\!\left(\eta\right) = \frac{{2}^{\ell}}{\Gamma\!\left(2 \ell + 2\right)} \exp\!\left(\frac{\log \Gamma\!\left(1 + \ell + i \eta\right) + \log \Gamma\!\left(1 + l - i \eta\right) - \pi \eta}{2}\right)
\ell \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \eta \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \,\mathbin{\operatorname{and}}\, 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CoulombC | Coulomb wave function Gamow factor | |
| Pow | Power | |
| GammaFunction | Gamma function | |
| Exp | Exponential function | |
| LogGamma | Logarithmic gamma function | |
| ConstI | Imaginary unit | |
| ConstPi | The constant pi (3.14...) | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("4a4739"),
Formula(Equal(CoulombC(ell, eta), Mul(Div(Pow(2, ell), GammaFunction(Add(Mul(2, ell), 2))), Exp(Div(Sub(Add(LogGamma(Add(Add(1, ell), Mul(ConstI, eta))), LogGamma(Sub(Add(1, l), Mul(ConstI, eta)))), Mul(ConstPi, eta)), 2))))),
Variables(ell, eta),
Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))))))