Assumptions:
TeX:
\zeta\!\left(s, a\right) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{{x}^{s - 1} {e}^{-a x}}{1 - {e}^{-x}} \, dx
s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1 \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| HurwitzZeta | Hurwitz zeta function | |
| Gamma | Gamma function | |
| Integral | Integral | |
| Pow | Power | |
| Exp | Exponential function | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("498036"),
Formula(Equal(HurwitzZeta(s, a), Mul(Div(1, Gamma(s)), Integral(Div(Mul(Pow(x, Sub(s, 1)), Exp(Neg(Mul(a, x)))), Sub(1, Exp(Neg(x)))), For(x, 0, Infinity))))),
Variables(s, a),
Assumptions(And(Element(s, CC), Greater(Re(s), 1), Element(a, CC), Greater(Re(a), 0))))