Assumptions:
TeX:
\zeta\!\left(s, a\right) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{{x}^{s - 1} {e}^{-a x}}{1 - {e}^{-x}} \, dx s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1 \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
HurwitzZeta | Hurwitz zeta function | |
Gamma | Gamma function | |
Integral | Integral | |
Pow | Power | |
Exp | Exponential function | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("498036"), Formula(Equal(HurwitzZeta(s, a), Mul(Div(1, Gamma(s)), Integral(Div(Mul(Pow(x, Sub(s, 1)), Exp(Neg(Mul(a, x)))), Sub(1, Exp(Neg(x)))), For(x, 0, Infinity))))), Variables(s, a), Assumptions(And(Element(s, CC), Greater(Re(s), 1), Element(a, CC), Greater(Re(a), 0))))