Assumptions:
TeX:
\left|\frac{1}{L\!\left(s, \chi\right)} - \prod_{p < N} \left(1 - \frac{\chi(p)}{{p}^{s}}\right)\right| \le \zeta\!\left(\operatorname{Re}(s), N\right) q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1 \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
DirichletL | Dirichlet L-function | |
PrimeProduct | Product over primes | |
Pow | Power | |
HurwitzZeta | Hurwitz zeta function | |
Re | Real part | |
ZZGreaterEqual | Integers greater than or equal to n | |
DirichletGroup | Dirichlet characters with given modulus | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("4911bd"), Formula(LessEqual(Abs(Sub(Div(1, DirichletL(s, chi)), PrimeProduct(Parentheses(Sub(1, Div(chi(p), Pow(p, s)))), For(p), Less(p, N)))), HurwitzZeta(Re(s), N))), Variables(q, chi, s, N), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC), Greater(Re(s), 1), Element(N, ZZGreaterEqual(1)))))