Assumptions:
TeX:
\sum_{n=0}^{q - 1} \chi(n) = \begin{cases} \varphi(q), & \chi = \chi_{q \, . \, 1}\\0, & \text{otherwise}\\ \end{cases} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Totient | Euler totient function | |
DirichletCharacter | Dirichlet character | |
ZZGreaterEqual | Integers greater than or equal to n | |
DirichletGroup | Dirichlet characters with given modulus |
Source code for this entry:
Entry(ID("4877d1"), Formula(Equal(Sum(chi(n), For(n, 0, Sub(q, 1))), Cases(Tuple(Totient(q), Equal(chi, DirichletCharacter(q, 1))), Tuple(0, Otherwise)))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))